Optimal Design of Motion Control Systems

Prof. Rohan Munasinghe Department of Electronic and Telecommunication EngineeringFaculty of EngineeringUniversity of Moratuwa 10400

Acknowledgement : Dr.Jacob Tal ¹

What is Optimal Design

A. System components must have the capability to move in minimum time

Hardware capability + trajectory planning

B. System must use its capabilities and be tuned for optimum performance

When the motion time. T. gets shorter:

- acceleration increases by $1/\mathsf{T}^2$
- current and power dissipation increase
- motor overheats

Motion time should be long enough to avoid damages to the motors

Another formulation of objective:

Perform a move within time T, while minimizing the motor temperature

2

Design Steps

- **(Higher utility, yet no overheating)**
- Best coupling between motor and load
- Best velocity profile

Optimality

- Rotate a motor by an angle θ and stop within T
- Select the best velocity profile that results in minimum motor temperature **minimum power dissipation**

Optimal Velocity Profile

From Optimal Control Theory

The optimal velocity profile is a parabola

Minimum energy dissipation

Energy dissipation per step is $E = \frac{12rJ^2\theta^2}{r^2}$

Where: $r = armature resistance$ J =moment of inertia θ = rotation angle K_t =torque constant
T = motion time

High currents at the ends saturates the Amp. Thus, parabolic profiles are not commonly used

Optimum profile is not practical

Suboptimal Profile: Trapezoidal

• The closest to the optimal (parabolic) is the trapezoidal velocity profile. Then, what's the optimum combination of acceleration - uniform velocity - deceleration ?

The best trapezoidal velocity profile is where the three intervals are equal AC CELER ATION From TIME **Optimization Theory Most popular profile** VELOCITY **in motion control systemsT_B** $2T/3$ TIME Here $E = \frac{13.5rJ\theta^2}{K^2T^3}$ 12% increase in power dissipation compared to parabolic velocity profile 5

Suboptimal Profile: Triangular

• Acceleration Bang-Bang– Not optimal in terms of power dissipation

Optimal Coupling

Examples of coupling: **Coupling is optimal when** Gear box **motor and load inertia are** Reduction by pulleys **matched**Belt and pulley Rack and pinion Lead screw **minimum temperature rise in the motor**Objective: Select coupling ratio to minimize motor temperature Solution: Select coupling ratio to achieve inertial match between motor and reflected load Motor inertia - J. Load inertia - J_{LO} Reduction ratio - N **Rotary Load**Reflected Load - $J_1 = J_{10}/N^2$ Inertial match - $J_m = J_{10}/N^2$

7

Optimal Coupling

Ex: A motor with inertia J $_{\rm m}$ =0.0002kgm 2 drives 0.5kg load through a pulley. Calculate the pulley radius for optimal performance

Motor inertia - J_m Load mass - M Pulley radius - R Reflected Load - $J_1 = MR^2$ Inertial match - $J_m = MR^2$

$$
R = \sqrt{\frac{J_m}{M}} = \sqrt{\frac{0.0002}{0.5}} = 0.002m
$$

Non-optimal CouplingTorque and Power Penalty

What if we cannot achieve optimal coupling ?If optimal coupling is N, and actual coupling ratio is n=D^{*}N, where

D= Deviation from optimum

then.

then,
Torque penalty: RT = ½ (D+1/D) =

Power dissipation penalty: PT = $\frac{1}{4}$ (D+1/D)²

Unnecessary power dissipation

Optimum Motor SelectionQuality Factor

Objective: Select the motor that results in minimum temperature

Answer: Select a motor with minimum:

Calculate Q for all candidate motors.Q is proportional to temperature rise

Where:

 R – armature resistance

 J_m – motor inertia

 R_{th} – thermal resistance of motor

 K_t – torque constant

Non-optimal Coupling

Ex: A motor with $J_m=0.0002kgm^2$ direct drives a load $J_l=0.005$ kam². Check whether direct drive is optimal, if not, calculate the torque penalty and power penalty

 $Jm = JL \times \frac{1}{N^2}$ Torque penalty: RT=2.6 Power penalty: RP=6.76

10

 $D = \frac{n}{N}$

Optimum Motor Selection

Design procedure:

Motion requirements are defined

Motor is selected

Optimal coupling between motor and load is used.

Ex: Following three motors satisfy the design requirement of a certain application. Select the most optimal motor

Unnecessary torque developed

• Centralized Control Systems• Distributed Control Systems• Flexible-Distributed Control Systems**Flexible Control SystemsCentralized Control Systems** • All motors are controlled directly by one multi-axis motion controller • E.g. **DMC-2183: 8axis, Ethernet**• Advantages – Simple communication – host communicates with a single motion controller– Easy programming – information about all motors is present in one controller– Coordinated motion is performed by motion controller– Low controller cost per axis• Disadvantages

13

– Long wiring – wires from drives, encoders and switches must be connected to the central controller $r \hspace{1.5cm} \frac{14}{14}$

Centralized Control Systems cntd..

Distributed Control Systems

 Motors are controlled by several motion controllers that are distributed throughout the machine

Distributed Control Systems

Typical distributed control systems use single-
axis controllers or drives

Advantages:

• Short wires - eliminates associated problems

Disadvantages:

- Complicated communication
- Complex motion programming
- High cost of network components
- High cost of controller per axis

17

Ethernet Based Distributed Control

Popular and widely used in Industry. A cost effective choice

Ethernet offers advantages over other networks

- 1. Lower cost of network components
- 2. TCP/IP protocol is well known
- 3. Network allows mixing components such as controller, I/O devices, camera, etc.
- 4. Ethernet systems are non-deterministic, and data sent more frequently than 1 msec may be delayed. Since communication is at a high-level between the host and the controller (commands sent less frequently than 1 msec) the nondeterministic nature of Ethernet is not an issue

18

Flexible Distributed Control Systems:Centralized Islands

Flexible Distributed Control Systems: Centralized Islands

Flexible Distributed Control Systems

- Combines the advantages of central and distributed control systems
• Compared to distributed control systems, EDCS is
- Compared to distributed control systems, FDCS is

Flexible

Reduces host communication burden Performs coordinated motion Lower cost

multiple axis controllers

- Flexible-distributed control is not restricted to single-axis motion controllers.
- The user divides his system into islands with each island having from 1 to 8 axes
- This gives designer flexibility.
- · Example- An 8-axis machine can use:

4# of 2-axis controllers, or 2# of 4-axis controllers, or2# of 3-axis controller+1# of 2-axis controller