Optimal Design of Motion Control Systems

Prof. Rohan Munasinghe Department of Electronic and Telecommunication Engineering Faculty of Engineering University of Moratuwa 10400

Acknowledgement : Dr.Jacob Tal

What is Optimal Design

A. System components must have the capability to move in minimum time tra

Hardware capability + trajectory planning

B. System must use its capabilities and be tuned for optimum performance

When the motion time, T, gets shorter:

- acceleration increases by 1/T²
- · current and power dissipation increase
- motor overheats

Motion time should be long enough to avoid damages to the motors

Another formulation of objective:

Perform a move within time T, while minimizing the motor temperature

2

Design Steps

- Best motor selection (Higher utility, yet no overheating)
- Best coupling between motor and load
- Best velocity profile

Optimality

- Rotate a motor by an angle θ and stop within T
- Select the best velocity profile that results in minimum motor temperature minimum power dissipation

Optimal Velocity Profile

From Optimal Control Theory

The optimal velocity profile is a parabola

Minimum energy dissipation

Energy dissipation per step is $E = \frac{12rJ^2\theta^2}{2}$

$$E = \frac{1213262}{K_t^2 T^3}$$

Where: r = armature resistance J =moment of inertia θ = rotation angle K t=torque constant T = motion time

High currents at the ends saturates the Amp. Thus, parabolic profiles are not commonly used

Optimum profile is not practical

Suboptimal Profile: Trapezoidal

• The closest to the optimal (parabolic) is the trapezoidal velocity profile. Then, what's the optimum combination of acceleration - uniform velocity - deceleration ?

The best trapezoidal velocity profile is where the three intervals are equal ACCELER ATION From TIME Optimization Theory Most popular profile VELOCITY in motion control systems Here E = 13.5rJ282 T.G 2T/3 TIME 12% increase in power dissipation compared to parabolic velocity profile ⁵

Suboptimal Profile: Triangular

Acceleration Bang-Bang

 Not optimal in terms of power dissipation

Optimal Coupling

Examples of coupling: Coupling is optimal when Gear box motor and load inertia are Reduction by pulleys matched Belt and pulley Rack and pinion Lead screw minimum temperature rise in the motor Objective: Select coupling ratio to minimize motor temperature Solution: Select coupling ratio to achieve inertial match between motor and reflected load Motor inertia - J_m Load inertia - J_{LO} Reduction ratio - N **Rotary Load** Reflected Load - $J_L = J_{LO} / N^2$ Inertial match - $J_m = J_{1,0} / N^2$ Optimal Coupling - N= J, / J, / J

Optimal Coupling

Ex: A motor with inertia $J_m=0.0002$ kgm² drives 0.5kg load through a pulley. Calculate the pulley radius for optimal performance

Motor inertia - J_m Load mass - M Pulley radius - R Reflected Load - $J_L = MR^2$ Inertial match - $J_m = MR^2$

$$R = \sqrt{\frac{J_m}{M}} = \sqrt{\frac{0.0002}{0.5}} = 0.002m$$

Non-optimal Coupling Torque and Power Penalty

What if we cannot achieve optimal coupling ? If optimal coupling is N, and actual coupling ratio is n=D*N, where

D= Deviation from optimum

then, Torque penalty: $RT = \frac{1}{2} (D+1/D)$

Power dissipation penalty: $PT = \frac{1}{4} (D+1/D)^2$

Unnecessary power

dissipation

Optimum Motor Selection Quality Factor

Objective: Select the motor that results in minimum temperature

Answer: Select a motor with minimum:

Calculate Q for all candidate motors. Q is proportional to temperature rise

Where:

R – armature resistance

J_m – motor inertia

R_{th} – thermal resistance of motor

Kt- torque constant

Non-optimal Coupling

Ex: A motor with J_m =0.0002kgm² direct drives a load J_L =0.005kgm². Check whether direct drive is optimal, if not, calculate the torque penalty and power penalty

Optimal reduction is N=5 $Jm = JL \times \frac{1}{N^2}$ If direct drive is used n=1, then D=0.2 $D = \frac{n}{N}$ Torque penalty: RT=2.6 Power penalty: RP=6.76

10

Optimum Motor Selection

Design procedure:

Motion requirements are defined

Motor is selected

Optimal coupling between motor and load is used.

Ex: Following three motors satisfy the design requirement of a certain application. Select the most optimal motor

Motor	A	В	C
r (Ω)	4.0	2	1.8
J _m [Kg · m²]	0.00012	0.0002	0.0005
R _{th} [°C / W]	3	2.2	1.8
K _t [N _m / A]	0.08	0.12	0.15

Flexible Control Systems

- Centralized Control Systems
- Distributed Control Systems
- Flexible-Distributed Control Systems

Centralized Control Systems

- All motors are controlled directly by one multi-axis motion controller
 - E.g. DMC-2183: 8axis, Ethernet
- · Advantages
 - Simple communication host communicates with a single motion controller
 - Easy programming information about all motors is present in one controller
 - Coordinated motion is performed by motion controller
 - Low controller cost per axis
- Disadvantages

13

 Long wiring – wires from drives, encoders and switches must be connected to the central controller

Centralized Control Systems cntd..

Distributed Control Systems

Motors are controlled by several motion controllers that are distributed throughout the machine

Distributed Control Systems

Typical distributed control systems use singleaxis controllers or drives

Advantages:

· Short wires - eliminates associated problems

Disadvantages:

- · Complicated communication
- · Complex motion programming
- · High cost of network components
- · High cost of controller per axis

Flexible Distributed Control Systems: Centralized Islands

17

Ethernet Based Distributed Control

Popular and widely used in Industry. A cost effective choice

Ethernet offers advantages over other networks

- 1. Lower cost of network components
- 2. TCP/IP protocol is well known
- Network allows mixing components such as controller, I/O devices, camera, etc.
- 4. Ethernet systems are non-deterministic, and data sent more frequently than 1 msec may be delayed. Since communication is at a high-level between the host and the controller (commands sent less frequently than 1 msec) the nondeterministic nature of Ethernet is not an issue.

18

Flexible Distributed Control Systems: Centralized Islands

Flexible Distributed Control Systems

- Combines the advantages of central and distributed control systems
- Compared to distributed control systems, FDCS is

Flexible

Reduces host communication burden Performs coordinated motion Lower cost

multiple axis controllers

- Flexible-distributed control is not restricted to single-axis motion controllers.
- The user divides his system into islands with each island having from 1 to 8 axes
- This gives designer flexibility.
- Example- An 8-axis machine can use: 4# of 2-axis controllers, or 2# of 4-axis controllers, or 2# of 3-axis controller+1# of 2-axis controller